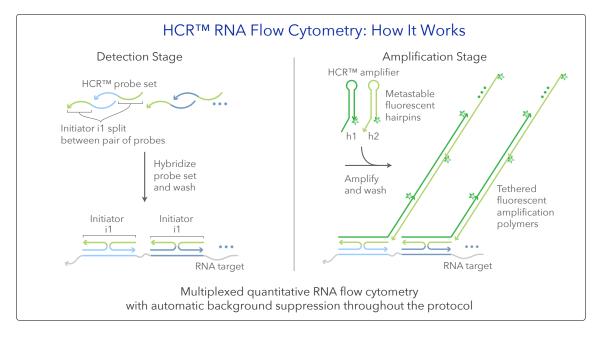
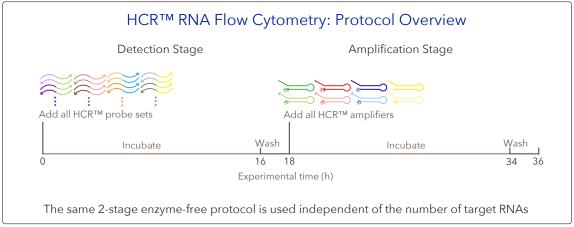


HCRTM RNA flow cytometry protocol for bacteria in suspension

This protocol has been optimized for *Escherichia coli* and should only be used as a template for other types of bacteria.

Technical support


support@molecularinstruments.com


Safety data sheets (SDS)

www.molecularinstruments.com/safety

Patents

Molecular Instruments® products are protected by and for use under patents: www.molecularinstruments.com/patents

Revision Number: 9 MI-Protocol-RNAFISH-BacteriaSuspension
Date: 2023-02-13 Page 1 of 8

HCRTM RNA Flow Cytometry

Multiplexed quantitative RNA flow cytometry

Multiplexed Experiment

• Order one HCRTM RNA-FISH bundle per target RNA

Example 2-Plex Experiment

- HCRTM RNA-FISH bundle for target mRNA1
 - HCRTM probe set: target mRNA1 for use with amplifier B1
 - HCRTM amplifier: B1-647
 - HCR™ RNA-FISH buffers: probe hybridization buffer, probe wash buffer, amplification buffer (for use with all bundles)
- HCR™ RNA-FISH bundle for target mRNA2
 - HCRTM probe set: target mRNA2 for use with amplifier B2
 - HCRTM amplifier: B2-488

Storage conditions

- Store HCRTM probe sets, HCRTM amplifiers, HCRTM RNA-FISH probe hybridization buffer, and HCRTM RNA-FISH probe wash buffer at -20 °C.
- Store HCRTM amplification buffer at 4 °C.
- On the bench top, keep stock solutions on ice.
- Make sure all solutions are well mixed before use.

Revision Number: 9 MI-Protocol-RNAFISH-BacteriaSuspension
Date: 2023-02-13 Page 2 of 8

Sample preparation

- 1. Grow E. coli from streaked plate or frozen glycerol stocks in 2–3 mL of LB media overnight in a 37 °C shaker.
- 2. Dilute to make a 5 mL liquid culture with $OD_{600} = 0.05$.
- 3. Incubate in a 37 °C shaker until OD₆₀₀ \approx 0.5 (exponential phase).
- 4. Aliquot 1 mL of cells and centrifuge for 10 min.

NOTE: Centrifugation should be as gentle as possible to pellet cells. For E. coli, all centrifugation steps are done at $4000 \times g$.

5. Remove supernatant and re-suspend cells in 750 μ L of 1× phosphate-buffered saline (PBS).

NOTE: remove all solutions via pipetting throughout the protocol.

6. Add 250 μ L of 4% formaldehyde and incubate overnight at 4 °C. CAUTION: use formaldehyde with extreme care as it is a hazardous material.

- 7. Centrifuge for 10 min and remove supernatant.
- 8. Re-suspend cells in 150 μ L of 1× PBS.
- 9. Add 850 μ L of 100% MeOH and store cells at -20 °C before use.

Revision Number: 9 MI-Protocol-RNAFISH-BacteriaSuspension
Date: 2023-02-13 Page 3 of 8

Multiplexed HCRTM RNA flow cytometry protocol

Detection stage

- 1. Transfer 150 μ L of cells into a 1.5 mL eppendorf tube.
- 2. Centrifuge for 5 min and remove supernatant.
- 3. Wash cells with 500 μ L of 1× PBST. Centrifuge for 5 min and remove the supernatant.
- Re-suspend the pellet with 400 μL of probe hybridization buffer and pre-hybridize for 1 h at 37 °C.
 CAUTION: probe hybridization buffer contains formamide, a hazardous material.
 NOTE: Probe hybridization buffer for cells in suspension will be used in this protocol.
- 5. In the meantime, prepare probe solution by adding 2 pmol of each probe set (e.g. 2 μ L of 1 μ M stock) to 100 μ L of probe hybridization buffer pre-heated to 37 °C.
- 6. Add the probe solution directly to the sample to reach a final probe concentration of 4 nM.

 NOTE: use higher probe concentration (e.g., 16 nM) to improve signal for quantitative RNA flow cytometry.
- 7. Incubate the sample overnight (>12 h) at 37 °C.
- 8. Add 1 mL of probe wash buffer to the sample to dilute the probes. CAUTION: *probe wash buffer contains formamide*, *a hazardous material*. NOTE: *pre-heat probe wash buffer to 37 °C before use*.
- 9. Centrifuge for 5 min and remove the wash solution.
- 10. Re-suspend the cell pellet with 500 μ L of probe wash buffer (pre-heated to 37 °C).
- 11. Incubate for 5 min at 37 °C and remove the wash solution by centrifugation for 5 min.
- 12. Repeat steps 10 and 11 for two additional times but with 10 min incubation.
- 13. Proceed to hairpin amplification.

Amplification stage

- 1. Re-suspend the cell pellet with 150 μ L of amplification buffer and pre-amplify for 30 min at room temperature. Note: Amplification buffer for cells in suspension will be used in this protocol. Equilibrate amplification buffer to room temperature before use.
- 2. Separately prepare 15 pmol of hairpin h1 and 15 pmol of hairpin h2 by snap cooling 5 μ L of 3 μ M stock (heat at 95 °C for 90 seconds and cool to room temperature in a dark drawer for 30 min).

NOTE: Hairpins h1 and h2 are provided in hairpin storage buffer ready for snap cooling. h1 and h2 should be snap cooled in separate tubes.

- 3. Prepare hairpin solution by adding snap-cooled h1 hairpins and snap-cooled h2 hairpins to 100 μ L of amplification buffer at room temperature.
- 4. Add the hairpin solution directly to the sample to reach a final hairpin concentration of 60 nM.
- 5. Incubate the sample overnight (>12 h) in the dark at room temperature.

Revision Number: 9 MI-Protocol-RNAFISH-BacteriaSuspension
Date: 2023-02-13 Page 4 of 8

- 6. Add 1 mL of $5 \times$ SSCT at room temperature to the sample to dilute the hairpins.
- 7. Centrifuge for 5 min and remove the wash solution.
- 8. Re-suspend the cell pellet with 500 μ L of 5× SSCT.
- 9. Incubate for 5 min at room temperature and remove the wash solution by centrifugation for 5 min.
- 10. Repeat steps 8 and 9 for two additional times but with 10 min incubation.
- 11. Re-suspend the cell pellet in desired buffer (e.g. $5 \times$ SSCT) and volume.
- 12. Samples can be stored at 4 °C protected from light before microscopy or flow cytometry. NOTE: *filter cells before flow cytometry*.

Revision Number: 9 MI-Protocol-RNAFISH-BacteriaSuspension
Date: 2023-02-13 Page 5 of 8

Buffer recipes

LB media

5 g of Novagen LB Broth Miller powder Fill up to 200 mL with ultrapure H_2O Autoclave at 121 °C for 20 min

4% formaldehyde

4% formaldehyde

 $1 \times \text{PBS}$

 $\mathbf{5} \times \mathbf{SSCT}$

5× sodium chloride sodium citrate (SSC)

0.1% Tween 20

For 4 mL of solution

1 mL of 16% formaldehyde

0.4 mL of $10 \times PBS$

Fill up to 4 mL with ultrapure H₂O

For 40 mL of solution

 $10 \text{ mL of } 20 \times \text{SSC}$

 $400~\mu L$ of 10% Tween 20

fill up to 40 mL with ultrapure H₂O

NOTE: avoid using calcium chloride and magnesium chloride in PBS as this leads to increased autofluorescence in the samples.

Revision Number: 9 MI-Protocol-RNAFISH-BacteriaSuspension
Date: 2023-02-13 Page 6 of 8

HCRTM Technology Citation Notes

For citation, please select from the list below as appropriate for your application:

• HCRTM IF + HCRTM RNA-FISH

HCRTM IF + HCRTM RNA-FISH enables a unified approach to multiplexed, quantitative, high-resolution protein immunofluorescence (IF) and RNA fluorescence in situ hybridization (RNA-FISH), with quantitative 1-step enzyme-free signal amplification performed for all protein and RNA targets simultaneously (Schwarzkopf et al., 2021).

• HCRTM IF

HCR™ IF enables multiplexed, quantitative, high-resolution protein immunofluorescence (IF) in highly autofluorescent samples (e.g., FFPE brain tissue sections) (Schwarzkopf et al., 2021).

• HCRTM RNA-FISH (v3.0)

Third-generation HCR™ RNA-FISH (v3.0) enables multiplexed, quantitative, high-resolution RNA fluorescence in situ hybridization (RNA-FISH) with automatic background suppression throughout the protocol for dramatically enhanced performance (signal-to-background, subcellular quantitative RNA imaging precision, single-molecule quantitative RNA imaging fidelity) and ease-of-use (no probe set optimization for new targets and organisms) (Choi et al., 2018). Quantitative analysis modes:

- Subcellular quantitative RNA imaging: analog mRNA relative quantitation with subcellular resolution in the anatomical context of thick autofluorescent samples.
- Single-molecule quantitative RNA imaging: digital mRNA absolute quantitation with single-molecule resolution in the anatomical context of thick autofluorescent samples.
- Quantitative RNA flow cytometry: analog mRNA relative quantitation for high-throughput expression profiling of mammalian cells and bacteria.

Protocols for HCRTM RNA-FISH (v3.0) in diverse organisms are adapted from the Zoo paper.

• Subcellular quantitative RNA imaging

Subcellular quantitative RNA imaging enables mRNA relative quantitation with subcellular resolution in the anatomical context of thick autofluorescent samples (e.g., whole-mount vertebrate embryos). The read-out/read-in analysis framework enables bidirectional quantitative discovery in an anatomical context (Trivedi et al., 2018).

Revision Number: 9 MI-Protocol-RNAFISH-BacteriaSuspension
Date: 2023-02-13 Page 7 of 8

· Zoo paper

Protocols for multiplexed mRNA imaging in diverse sample types (Choi et al., 2016):

- o bacteria in suspension
- FFPE human tissue sections
- o generic sample in solution
- o generic sample on a slide
- o mammalian cells on a slide
- o mammalian cells in suspension
- o whole-mount chicken embryos
- whole-mount fruit fly embryos
- whole-mount mouse embryos
- o whole-mount nematode larvae
- o whole-mount sea urchin embryos
- o whole-mount zebrafish embryos and larvae

Single-molecule quantitative RNA imaging

Single-molecule quantitative RNA imaging enables RNA absolute quantitation with single-molecule resolution in the anatomical context of thick autofluorescent samples (e.g., 0.5 mm adult mouse brain sections) (Shah et al., 2016).

• HCRTM northern blots

HCR™ northern blots enable multiplexed quantification of RNA target size and abundance for up to 5 target RNAs (Schwarzkopf & Pierce, 2016).

• HCRTM RNA-FISH (v2.0)

Second-generation in situ HCRTM RNA-FISH technology (v2.0) using DNA HCRTM probes and DNA HCRTM amplifiers: $10 \times$ increase in signal, $10 \times$ reduction in cost, dramatic increase in reagent durability (Choi et al., 2014).

• HCRTM RNA-FISH (v1.0)

First-generation HCRTM RNA-FISH technology (v1.0) using RNA HCRTM probes and RNA HCRTM amplifiers: multiplexed mRNA imaging in whole-mount vertebrate embryos with simultaneous signal amplification for up to 5 target mRNAs (Choi et al., 2010).

HCRTM technology

HCRTM amplifiers enable multiplexed, quantitative, 1-step, isothermal, enzyme-free signal amplification in diverse technological settings (Dirks & Pierce, 2004).

Revision Number: 9 MI-Protocol-RNAFISH-BacteriaSuspension
Date: 2023-02-13 Page 8 of 8