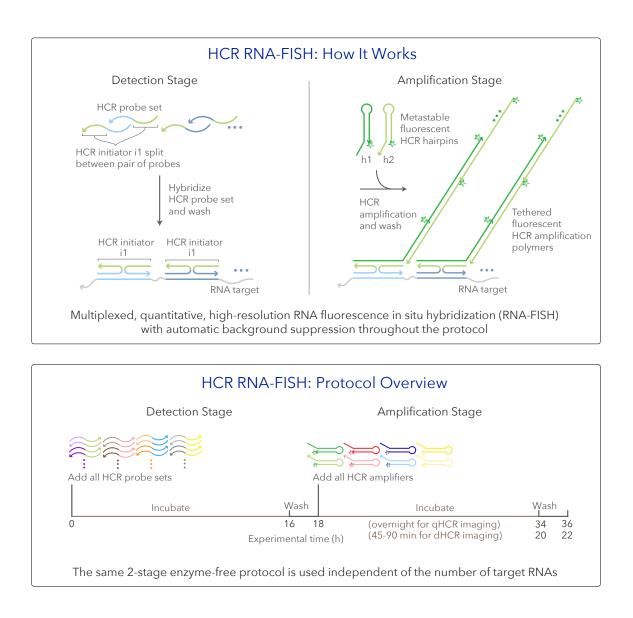


HCR RNA-FISH protocol for whole-mount chicken embryos (Gallus gallus domesticus)

This protocol has been optimized for embryos at stage HH 8–11 and should only be used as a template for other stages.

Technical support


support@molecularinstruments.com

Safety data sheets (SDS)

www.molecularinstruments.com/safety

Patents

Molecular Instruments[®] products are protected by and for use under patents: www.molecularinstruments.com/patents

Revision Number: 9 Date: 2022-07-18

HCR RNA-FISH

Multiplexed, quantitative, high-resolution RNA imaging

Multiplexed Experiment

• Order one HCR RNA-FISH bundle per target RNA

Example 2-Plex Experiment

- HCR bundle for target mRNA1
 - HCR split-initiator probe set: target mRNA1 for use with amplifier B1
 - HCR amplifier: B1-647
 - HCR RNA-FISH buffers: probe hybridization buffer, probe wash buffer, amplification buffer (for use with all bundles)
- HCR bundle for target mRNA2
 - HCR split-initiator probe set: target mRNA2 for use with amplifier B2
 - HCR amplifier: B2-488

Storage conditions

- Store HCR probe sets, HCR amplifiers, HCR probe hybridization buffer, and HCR probe wash buffer at -20 °C.
- Store HCR amplification buffer at 4 °C.
- On the bench top, keep stock solutions on ice.
- Make sure all solutions are well mixed before use.

Preparation of fixed whole-mount chicken embryos

- 1. Collect chick embryos on 3M paper circles and place in a petri dish containing Ringer's solution.
- 2. Transfer embryos into a new petri dish with fresh Ringer's solution. NOTE: *This is to rinse away egg yolk before fixation.*
- 3. Transfer into a petri dish containing 4% paraformaldehyde (PFA). CAUTION: use PFA with extreme care as it is a hazardous material. NOTE: use fresh PFA and cool to 4 °C before use to avoid increased autofluorescence.
- 4. Fix the samples at room temperature for 1 h.
- 5. Transfer embryos into a petri dish containing PBST.
- 6. Dissect the embryos off the filter paper. Remove the fixed vitelline membrane (opaque) and cut the squares around area pellucida, without leaving excess of extra-embryonic tissue.
- 7. Transfer embryos into a 2 mL tube containing PBST.
- 8. Nutate for 5 min with the tube positioned horizontally in a small ice bucket.
- 9. Wash embryos two additional times with 2 mL of PBST, each time nutating for 5 min on ice.
- 10. Dehydrate embryos with 2×5 min washes of 2 mL methanol (MeOH) on ice.
- 11. Store embryos at -20 °C overnight before use. NOTE: *Embryos can be stored for six months at -20* °*C*.
- 12. Transfer the required number of embryos for an experiment to a 2 mL tube. NOTE: *do not place more than 4 embryos in each 2 mL tube.*
- 13. Rehydrate with a series of graded 2 mL MeOH/PBST washes for 5 min each on ice:
 - (a) 75% MeOH / 25% PBST
 - (b) 50% MeOH / 50% PBST
 - (c) 25% MeOH / 75% PBST
 - (d) 100% PBST
 - (e) 100% PBST.
- 14. Treat embryos with 2 mL of 10 μ g/mL proteinase K solution for 2 min (stage HH 8) or 2.5 min (stage HH 10–11) at room temperature.

NOTE: Proteinase K concentration and treatment time should be reoptimized for each batch of proteinase K, or for samples at a different developmental stage.

- 15. Postfix with 2 mL of 4% PFA for 20 min at room temperature. CAUTION: *use PFA with extreme care as it is a hazardous material.*
- 16. Wash embryos 2×5 min with 2 mL of PBST on ice.
- 17. Wash embryos with 2 mL of 50% PBST / 50% $5 \times$ SSCT for 5 min on ice.
- 18. Wash embryos with 2 mL of $5 \times$ SSCT for 5 min on ice.

Revision Number: 9 Date: 2022-07-18

Multiplexed HCR RNA-FISH protocol

Detection stage

- 1. For each sample, transfer 1-4 embryos to a 2 mL tube. NOTE: *do not place more than 4 embryos in each 2 mL tube.*
- 2. Pre-hybridize embryos in 500 μ L of probe hybridization buffer for 30 min at 37 °C. CAUTION: probe hybridization buffer contains formamide, a hazardous material.
- Prepare probe solution by adding 2 pmol of each probe set (e.g. 2 μL of 1 μM stock) to 500 μL of probe hybridization buffer at 37 °C.
 NOTE: For dHCR imaging, use higher probe concentration (e.g., 16 nM) to increase probe hybridization yield. If desired, this approach can also be used to increase signal for qHCR imaging.
- 4. Remove the pre-hybridization solution and add the probe solution.
- 5. Incubate embryos overnight (>12 h) at 37 $^{\circ}$ C.
- 6. Remove excess probes by washing embryos 4 × 15 min with 1 mL of probe wash buffer at 37 °C. CAUTION: probe wash buffer contains formamide, a hazardous material. NOTE: pre-heat probe wash buffer to 37 °C before use.
- 7. Wash samples 2×5 min with $5 \times$ SSCT at room temperature.

Amplification stage

- 1. Pre-amplify embryos with 500 μ L of amplification buffer for 5 min at room temperature. NOTE: *equilibrate amplification buffer to room temperature before use.*
- Separately prepare 30 pmol of hairpin h1 and 30 pmol of hairpin h2 by snap cooling 10 μL of 3 μM stock (heat at 95 °C for 90 seconds and cool to room temperature in a dark drawer for 30 min).
 NOTE: HCR hairpins h1 and h2 are provided in hairpin storage buffer ready for snap cooling. h1 and h2 should be snap cooled in separate tubes.
- 3. Prepare hairpin solution by adding snap-cooled h1 hairpins and snap-cooled h2 hairpins to 500 μ L of amplification buffer at room temperature.
- 4. Remove the pre-amplification solution and add the hairpin solution.
- 5. Incubate the embryos overnight (>12 h) in the dark at room temperature. NOTE: For dHCR imaging, amplify for a shorter period of time (e.g. 90 min for stage HH 8 embryos) to ensure single-molecule dots are diffraction-limited.
- 6. Remove excess hairpins by washing with 1 mL of $5 \times$ SSCT at room temperature:
 - (a) $2 \times 5 \min$
 - (b) $2 \times 30 \min$
 - (c) $1 \times 5 \min$
- 7. Samples can be stored at 4 °C protected from light before microscopy.

Revision Number: 9 Date: 2022-07-18 MI-Protocol-RNAFISH-Chicken Page 4 of 8

Buffer recipes

Ringer's solution

123 mM NaCl 1.53 mM CaCl₂ 4.96 mM KCl₂ 0.81 mM Na₂HPO₄ 0.15 mM KH₂PO₄

 $\frac{4\% \text{ paraformaldehyde (PFA)}}{4\% \text{ PFA}}$ $1 \times \text{PBS}$

PBST

 $1 \times PBS$ 0.1% Tween 20

Proteinase K solution

10 μ g/mL proteinase K

$5 \times SSCT$

 $5 \times$ sodium chloride sodium citrate (SSC) 0.1% Tween 20

For 25 mL of solution 1 g of PFA powder 25 mL of 1× PBS Heat solution at 50–60 °C to dissolve powder

 $\frac{\text{For 2 mL of solution}}{1 \ \mu\text{L of 20 mg/mL proteinase K}}$ Fill up to 2 mL with PBST

 $\label{eq:solution} \begin{array}{l} \hline \mbox{For 40 mL of solution} \\ 10 \mbox{ mL of 20} \times \mbox{SSC} \\ 400 \mbox{ μL of 10\% Tween 20} \\ \hline \mbox{Fill up to 40 mL with ultrapure } H_2 O \end{array}$

NOTE: avoid using calcium chloride and magnesium chloride in PBS as this leads to increased autofluorescence in the embryos.

HCR Technology Citation Notes

For citation, please select from the list below as appropriate for your application:

• HCR IHC + HCR RNA-FISH

HCR IHC + HCR RNA-FISH enables a unified approach to multiplexed, quantitative, high-resolution protein immunohistochemistry (IHC) and RNA fluorescence in situ hybridization (RNA-FISH), with quantitative 1-step enzyme-free HCR signal amplification performed for all protein and RNA targets simultaneously (Schwarzkopf et al., 2021).

• HCR IHC

HCR IHC enables multiplexed, quantitative, high-resolution protein immunohistochemistry (IHC) in highly autofluorescent samples (e.g., FFPE brain tissue sections) (Schwarzkopf et al., 2021).

• HCR RNA-FISH (v3.0)

Third-generation HCR RNA-FISH (v3.0) enables multiplexed, quantitative, high-resolution RNA fluorescence in situ hybridization (RNA-FISH) with automatic background suppression *throughout the protocol* for dramatically enhanced performance (signal-to-background, qHCR precision, dHCR fidelity) and ease-of-use (no probe set optimization for new targets and organisms) (Choi et al., 2018). Quantitative analysis modes:

- qHCR RNA imaging: analog mRNA relative quantitation with subcellular resolution in the anatomical context of thick autofluorescent samples.
- dHCR RNA imaging: digital mRNA absolute quantitation with single-molecule resolution in the anatomical context of thick autofluorescent samples.
- qHCR RNA flow cytometry: analog mRNA relative quantitation for high-throughput expression profiling of mammalian cells and bacteria.

Protocols for HCR RNA-FISH (v3.0) in diverse organisms are adapted from the Zoo paper.

• qHCR RNA imaging

qHCR RNA imaging enables mRNA relative quantitation with subcellular resolution in the anatomical context of thick autofluorescent samples (e.g., whole-mount vertebrate embryos). The read-out/read-in analysis framework enables bidirectional quantitative discovery in an anatomical context (Trivedi et al., 2018).

• Zoo paper

Protocols for multiplexed mRNA imaging in diverse sample types (Choi et al., 2016):

- bacteria in suspension
- FFPE human tissue sections
- generic sample in solution
- generic sample on a slide
- mammalian cells on a slide
- mammalian cells in suspension
- whole-mount chicken embryos
- whole-mount fruit fly embryos
- \circ whole-mount mouse embryos
- whole-mount nematode larvae
- whole-mount sea urchin embryos
- whole-mount zebrafish embryos and larvae

• dHCR imaging

dHCR RNA imaging enables RNA absolute quantitation with single-molecule resolution in the anatomical context of thick autofluorescent samples (e.g., 0.5 mm adult mouse brain sections) (Shah et al., 2016).

• qHCR northern blots

qHCR northern blots enable multiplexed quantification of RNA target size and abundance for up to 5 target RNAs (Schwarzkopf & Pierce, 2016).

• HCR RNA-FISH (v2.0)

Second-generation in situ HCR RNA-FISH technology (v2.0) using DNA HCR probes and DNA HCR probes and DNA HCR amplifiers: $10 \times$ increase in signal, $10 \times$ reduction in cost, dramatic increase in reagent durability (Choi et al., 2014).

• HCR RNA-FISH (v1.0)

First-generation HCR RNA-FISH technology (v1.0) using RNA HCR probes and RNA HCR amplifiers: multiplexed mRNA imaging in whole-mount vertebrate embryos with simultaneous signal amplification for up to 5 target mRNAs (Choi et al., 2010).

• HCR mechanism

The hybridization chain reaction (HCR) mechanism enables multiplexed, quantitative, 1-step, isothermal, enzyme-free signal amplification in diverse technological settings (Dirks & Pierce, 2004).

HCR Technology References

- Choi, H. M. T., Chang, J. Y., Trinh, L. A., Padilla, J. E., Fraser, S. E., & Pierce, N. A. (2010). Programmable in situ amplification for multiplexed imaging of mRNA expression. *Nat Biotechnol*, **28**(11), 1208–12.
- Choi, H. M. T., Beck, V. A., & Pierce, N. A. (2014). Next-generation in situ hybridization chain reaction: higher gain, lower cost, greater durability. *ACS Nano*, **8**(5), 4284–4294.
- Choi, H. M. T., Calvert, C. R., Husain, N., Huss, D., Barsi, J. C., Deverman, B. E., Hunter, R. C., Kato, M., Lee, S. M., Abelin, A. C. T., Rosenthal, A. Z., Akbari, O. S., Li, Y., Hay, B. A., Sternberg, P. W., Patterson, P. H., Davidson, E. H., Mazmanian, S. K., Prober, D. A., van de Rijn, M., Leadbetter, J. R., Newman, D. K., Readhead, C., Bronner, M. E., Wold, B., Lansford, R., Sauka-Spengler, T., Fraser, S. E., & Pierce, N. A. (2016). Mapping a multiplexed zoo of mRNA expression. *Development*, 143, 3632–3637.
- Choi, H. M. T., Schwarzkopf, M., Fornace, M. E., Acharya, A., Artavanis, G., Stegmaier, J., Cunha, A., & Pierce, N. A. (2018). Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. *Development*, 145, dev165753.
- Dirks, R. M., & Pierce, N. A. (2004). Triggered amplification by hybridization chain reaction. *Proc Natl Acad Sci* USA, **101**(43), 15275–15278.
- Schwarzkopf, M., & Pierce, N. A. (2016). Multiplexed miRNA northern blots via hybridization chain reaction. *Nucleic Acids Res*, **44**(15), e129.
- Schwarzkopf, M., Liu, M.C., Schulte, S.J., Ives, R., Husain, N., Choi, H.M.T., & Pierce, N. A. (2021). Hybridization chain reaction enables a unified approach to multiplexed, quantitative, high-resolution immunohistochemistry and in situ hybridization. *Development*, **148**(22), dev199847.
- Shah, S., Lubeck, E., Schwarzkopf, M., He, T.-F., Greenbaum, A., Sohn, C. H., Lignell, A., Choi, H. M. T., Gradinaru, V., Pierce, N. A., & Cai, L. (2016). Single-molecule RNA detection at depth via hybridization chain reaction and tissue hydrogel embedding and clearing. *Development*, 143, 2862–2867.
- Trivedi, V., Choi, H. M. T., Fraser, S. E., & Pierce, N. A. (2018). Multidimensional quantitative analysis of mRNA expression within intact vertebrate embryos. *Development*, **145**, dev.156869.