

HCRTM RNA-FISH (v3.0) protocol for fresh frozen or fixed frozen tissue sections

This protocol has not been validated for all tissue types and should only be used as a template.

Technical Support support@molecularinstruments.com

Safety Data Sheets (SDS) www.molecularinstruments.com/safety-v3

Patents

www.molecularinstruments.com/patents

Ordering for Multiplex Experiment Order one HCRTM RNA-FISH (v3.0) kit per target RNA

Example 2-Plex Experiment

- HCRTM RNA-FISH (v3.0) kit for target mRNA1
 - $\circ~$ HCRTM Probe (v3.0): target mRNA1 for use with amplifier B1
 - HCR™ Amplifier (v3.0): B1-647
 - HCR[™] RNA-FISH Buffers (v3.0): HCR[™] Probe Hybridization Buffer (v3.0), HCR[™] Probe Wash Buffer (v3.0), HCR[™] Amplifier Buffer (v3.0) (for use with all kits)
- HCRTM RNA-FISH (v3.0) kit for target mRNA2
 - HCRTM Probe (v3.0): target mRNA2 for use with amplifier B2
 - HCRTM Amplifier (v3.0): B2-488

Storage conditions

- Store HCR[™] Probes (v3.0), HCR[™] Amplifiers (v3.0), HCR[™] Probe Hybridization Buffer (v3.0), and HCR[™] Probe Wash Buffer (v3.0) at -20 °C.
- Store HCRTM Amplifier Buffer (v3.0) at 4 °C.
- On the bench top, keep stock solutions on ice.
- Make sure all solutions are well mixed before use.

Sample preparation protocol

- 1. Remove frozen sections on slide from -80 $^{\circ}$ C.
- Fix tissues by immersing slides in ice-cold 4% paraformaldehye (PFA) for 15 min at 4 °C. CAUTION: use PFA with extreme care as it is a hazardous material. NOTE: use fresh PFA and cool to 4 °C before use to avoid increased autofluorescence. NOTE: Each 50 mL tube can fit two outward-facing slides. A volume of 30 mL is sufficient to immerse sections in the tube. If desired, a larger number of slides can be processed together using a Coplin jar.
- 3. Immerse slides in 50% EtOH for 5 min at room temperature.
- 4. Immerse slides in 70% EtOH for 5 min at room temperature.
- 5. Immerse slides in 100% EtOH for 5 min at room temperature.
- 6. Immerse slides in another fresh 100% EtOH for 5 min at room temperature.
- 7. Immerse slides in PBS.
- 8. Dry slide using a Kimwipe. Avoid touching the tissue.
- 9. Draw a barrier around the tissue using a hydrophobic pen.
- Optional: Introduce 200 μL of 10 μg/mL of proteinase K solution on top of sample and incubate slides in a humidified chamber for 10 min at 37 °C.
 NOTE: Proteinase K concentration and treatment time should be reoptimized for each batch of proteinase K.
- Wash slides by immersing in 1× PBS.
 NOTE: avoid using calcium chloride and magnesium chloride in PBS as this leads to increased autofluorescence in the tissue.
- 12. Repeat with fresh $1 \times PBS$.
- 13. Proceed to HCRTM RNA-FISH assay.

Multiplexed HCR[™] RNA-FISH (v3.0) protocol

Detection stage

- 1. Pre-warm a humidified chamber to 37 °C.
- 2. Dry slide by blotting edges on a Kimwipe.
- 3. Add 200 μL of HCRTM Probe Hybridization Buffer (v3.0) on top of the sample. CAUTION: *HCRTM Probe Hybridization Buffer (v3.0) contains formamide, a hazardous material.*
- 4. Pre-hybridize for 10 min inside the humidified chamber.
- 5. Prepare probe solution by adding 0.4 pmol of each HCRTM Probe (v3.0) (e.g. 0.4 μL of 1 μM stock) to 100 μL of HCRTM Probe Hybridization Buffer (v3.0) at 37 °C. NOTE: For single-molecule RNA imaging, use higher probe concentration (e.g., 16 nM) to increase probe hybridization yield. If desired, this approach can also be used to increase signal for subcellular quantitative RNA imaging.
- 6. Remove the pre-hybridization solution and drain excess buffer on slide by blotting edges on a Kimwipe.
- 7. Add 50–100 μ L of the probe solution on top of the sample. NOTE: *Amount of probe solution depends on the size of the coverslip.*
- 8. Place a coverslip on the sample and incubate overnight (>12 h) in the 37 °C humidified chamber.
- 9. Immerse slide in HCR[™] Probe Wash Buffer (v3.0) at 37 °C to float off coverslip. CAUTION: *HCR[™] Probe Wash Buffer (v3.0) contains formamide, a hazardous material.*
- 10. Remove excess probes by incubating slide at 37 °C in:
 - (a) 75% of HCRTM Probe Wash Buffer (v3.0) / 25% $5 \times$ SSCT for 15 min
 - (b) 50% of HCRTM Probe Wash Buffer (v3.0)/ 50% $5 \times$ SSCT for 15 min
 - (c) 25% of HCRTM Probe Wash Buffer (v3.0) / 75% $5 \times$ SSCT for 15 min
 - (d) 100% $5 \times$ SSCT for 15 min

NOTE: Wash solutions should be pre-heated to $37 \degree C$ before use.

11. Immerse slide in $5 \times$ SSCT for 5 min at room temperature.

Amplification stage

- 1. Dry slide by blotting edges on a Kimwipe.
- 2. Add 200 μ L of HCRTM Amplifier Buffer (v3.0) on top of the sample and pre-amplify in a humidified chamber for 30 min at room temperature.
- Separately prepare 6 pmol of hairpin h1 and 6 pmol of hairpin h2 by snap cooling 2 μL of 3 μM stock (heat at 95 °C for 90 seconds and cool to room temperature in a dark drawer for 30 min).
 NOTE: Hairpins h1 and h2 are provided in hairpin storage buffer ready for snap cooling. h1 and h2 should be snap cooled in separate tubes.
- 4. Prepare hairpin solution by adding snap-cooled h1 hairpins and snap-cooled h2 hairpins to 100 μ L of HCRTM Amplifier Buffer (v3.0) at room temperature.
- 5. Remove the pre-amplification solution and drain excess buffer on slide by blotting edges on a Kimwipe.
- 6. Add 50–100 μ L of the hairpin solution on top of the sample. NOTE: *Amount of hairpin solution depends on the size of the coverslip.*
- 7. Place a coverslip on the sample and incubate overnight (>12 h) in a dark humidified chamber at room temperature.

NOTE: For single-molecule RNA imaging, amplify for a shorter period of time to ensure single-molecule dots are diffraction-limited.

- 8. Immerse slide in $5 \times$ SSCT at room temperature to float off coverslip.
- 9. Remove excess hairpins by incubating slide in $5 \times$ SSCT at room temperature for:
 - (a) $2 \times 30 \min$
 - (b) $1 \times 5 \min$
- 10. Dry slide by blotting edges on a Kimwipe.
- 11. Add 50–100 μ L of antifade mounting reagent on top of the sample.
- 12. Place a coverslip on top for microscopy.

Buffer recipes

4% paraformaldehyde (PFA) 4% PFA 1× PBS

Proteinase K solution 10 µg/mL proteinase K

 $\frac{5 \times \text{ SSCT}}{5 \times \text{ sodium chloride sodium citrate (SSC)}}$ 0.1% Tween 20 For 30 mL of solution 7.5 mL of 16% PFA solution 3 mL of 10× PBS Fill up to 30 mL with water

 $\frac{\text{For 1 mL of solution}}{0.5 \ \mu\text{L of 20 mg/mL}}$ proteinase K Fill up to 1 mL with $1 \times \text{PBS}$

NOTE: avoid using calcium chloride and magnesium chloride in PBS as this leads to increased autofluorescence in the samples.

HCRTM Technology Citation Notes

For citation, please select from the list below as appropriate for your application:

• 10-Plex HCRTM Spectral Imaging

HCR[™] RNA-FISH/IF enables quantitative high-resolution imaging of 10 RNA and/or protein targets with 1step HCR[™] signal amplification for all targets simultaneously. The method is suitable even for whole-mounts and delicate samples as it requires no repeated staining, imaging, registration, or stripping (Schulte et al., 2024).

• HCRTM RNA-FISH/IF

HCR[™] RNA-FISH/IF enables a unified approach to multiplex, quantitative, high-resolution RNA fluorescence in situ hybridization (RNA-FISH) and protein immunofluorescence (IF), with quantitative 1-step enzymefree signal amplification performed for all RNA and protein targets simultaneously (Schwarzkopf et al., 2021).

• **HCR**TM **IF**

HCR[™] IF enables multiplex, quantitative, high-resolution protein immunofluorescence (IF) in highly autofluorescent samples (e.g., FFPE brain tissue sections) (Schwarzkopf et al., 2021).

• HCRTM RNA-FISH

- Third-generation HCR[™] RNA-FISH (v3.0) enables multiplex, quantitative, high-resolution RNA fluorescence in situ hybridization (RNA-FISH) with automatic background suppression throughout the protocol for dramatically enhanced performance (signal-to-background, subcellular quantitative RNA imaging precision, single-molecule quantitative RNA imaging fidelity) and ease-of-use (no probe set optimization for new targets and organisms) (Choi et al., 2018).
- Second-generation HCR[™] RNA-FISH (v2.0) using DNA HCR[™] Probes and DNA HCR[™] Amplifiers: 10× increase in signal, 10× reduction in cost, dramatic increase in reagent durability (Choi et al., 2014).
- First-generation HCRTM RNA-FISH (v1.0) using RNA HCRTM Probes and RNA HCRTM Amplifiers: multiplex mRNA imaging in whole-mount vertebrate embryos with simultaneous signal amplification for up to 5 target mRNAs (Choi et al., 2010).

• Subcellular Quantitative RNA and Protein Imaging

HCR[™] RNA-FISH enables analog relative quantitation of RNA and/or protein targets with subcellular resolution in the anatomical context of thick autofluorescent samples (e.g., whole-mount vertebrate embryos) (Trivedi et al., 2018, Choi et al., 2018, Schwarzkopf et al., 2021).

• Single-Molecule Quantitative RNA Imaging

HCR[™] RNA-FISH enables digital RNA absolute quantitation with single-molecule resolution in the anatomical context of thick autofluorescent samples (e.g., 0.5 mm adult mouse brain sections) (Shah et al., 2016, Choi et al., 2018).

Read-Out/Read-In Analysis Framework

The read-out/read-in analysis framework enables bidirectional quantitative discovery in an anatomical context (Trivedi et al., 2018).

• **Protocols in Diverse Sample Types** Protocols for HCRTM RNA-FISH and/or IF in diverse sample types are adapted from the zoo paper (Choi et al., 2016):

• bacteria in suspension

Revision Number: 5 Date: 2025-03-25

- FFPE human tissue sections
- generic sample in solution
- generic sample on a slide
- mammalian cells on a slide
- mammalian cells in suspension
- whole-mount chicken embryos
- whole-mount fruit fly embryos
- \circ whole-mount mouse embryos
- whole-mount nematode larvae
- whole-mount sea urchin embryos
- whole-mount zebrafish embryos and larvae

• HCRTM RNA Flow Cytometry

HCR[™] RNA Flow Cytometry enables analog RNA relative quantitation for high-throughput expression profiling of mammalian cells and bacteria without the need to engineer reporter lines (Choi et al., 2018).

• HCRTM Northern Blots

HCR[™] Northern Blots enable simultaneous quantification of RNA target size and abundance with automatic background suppression throughout the protocol (Schwarzkopf & Pierce, 2016).

• HCRTM Amplifiers

HCR[™] Amplifiers enable multiplex, quantitative, 1-step, isothermal, enzyme-free signal amplification in diverse technological settings (Dirks & Pierce, 2004).