

HCRTM RNA-FISH (v3.0) protocol for whole-mount fruit fly embryos

This protocol has not been optimized for all stages and should only be used as a template.

Technical Support support@molecularinstruments.com

Safety Data Sheets (SDS) www.molecularinstruments.com/safety-v3

Patents

www.molecularinstruments.com/patents

Ordering for Multiplex Experiment Order one HCRTM RNA-FISH (v3.0) kit per target RNA

Example 2-Plex Experiment

- HCRTM RNA-FISH (v3.0) kit for target mRNA1
 - HCRTM Probe (v3.0): target mRNA1 for use with amplifier B1
 - HCR™ Amplifier (v3.0): B1-647
 - HCR[™] RNA-FISH Buffers (v3.0): HCR[™] Probe Hybridization Buffer (v3.0), HCR[™] Probe Wash Buffer (v3.0), HCR[™] Amplifier Buffer (v3.0) (for use with all kits)
- HCRTM RNA-FISH (v3.0) kit for target mRNA2
 - HCRTM Probe (v3.0): target mRNA2 for use with amplifier B2
 - HCR[™] Amplifier (v3.0): B2-488

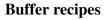
Storage conditions

- Store HCR[™] Probes (v3.0), HCR[™] Amplifiers (v3.0), HCR[™] Probe Hybridization Buffer (v3.0), and HCR[™] Probe Wash Buffer (v3.0) at -20 °C.
- Store HCRTM Amplifier Buffer (v3.0) at 4 $^{\circ}$ C.
- On the bench top, keep stock solutions on ice.
- Make sure all solutions are well mixed before use.

Preparation of fixed whole-mount fruit fly embryos

- 1. Collect fly embryos and incubate with yeast paste (food source) until they reach stage 4–6 (approximately 3 h).
- 2. Rinse embryos into a mesh basket and wash excess yeast paste using DI H₂O.
- 3. Immerse the mesh basket into 100% bleach and wash for 2 min to dechorinate embryos.
- 4. Rinse the basket with DI H_2O .
- 5. Transfer embryos to a scintillation vial containing 8 mL of 4.5% formaldehyde fixation solution. CAUTION: *use formaldehyde with extreme care as it is a hazardous material.*
- 6. Gently rock embryos in scintillation vial for 25 min on an orbital rocker. NOTE: Rocking does not have to be very vigorous. However, embryos must move continuously within the heptane-fixative interphase to be exposed uniformly to the solvent and fixative.
- 7. Remove the bottom liquid phase in the vial.
- 8. Add 8 mL of methanol (MeOH) and shake the vial hard for 1 min. Devitellinized embryos will sink to the bottom of the vial.
- 9. Remove all liquid and rinse 2 times in 1 mL of MeOH to remove debris. NOTE: *Embryos can be stored in 1 mL of MeOH at -20 °C before use.*
- 10. For each sample, transfer 50 μ L of embryos (using a cut pipet tip) to a 1.5 mL tube.
- 11. Rinse embryos 4 times by quickly adding 1 mL of ethanol (EtOH), inverting the tube, and aspirating the supernatant.
- 12. Add 500 μ L of EtOH and 250 μ L of xylene and invert the tube. CAUTION: *use xylene with care as it is a hazardous material.*
- 13. Add an additional 250 μ L of xylene and invert the tube.
- 14. Add another 250 μ L of xylene again and invert the tube. NOTE: *The tube should now contain 500 \muL of EtOH and 750 \muL of xylene.*
- 15. Rock the tube at room temperature for 45–60 min. Longer rocking time is acceptable.
- 16. Aspirate the supernatant.
- 17. Rinse embryos once and wash 3 × 5 min with EtOH.
 NOTE: All washes have a volume of 1 mL unless specified. All washes before pre-hybridization (step 1) are performed with rocking.
- 18. Rinse embryos once and wash 2×5 min with MeOH.

- 19. Wash with 50% MeOH / 50% PBST for 5 min.
- 20. Wash 1 \times 10 min and 2 \times 5 min with PBST.
- 21. Rock embryos in 1 mL of 4 μ g/mL proteinase K solution at room temperature for 7 min. NOTE: Proteinase K concentration and treatment time should be reoptimized for each batch of proteinase K, or for samples at a different developmental stage.
- 22. Rinse embryos 2 times and wash 2×5 min with PBST.
- 23. Rock embryos in 4% formaldehyde post-fixation solution at room temperature for 25 min.
- 24. Rinse embryos and wash 5×5 min with PBST.


Multiplexed HCRTM RNA-FISH (v3.0) protocol

Detection stage

- 1. Pre-hybridize embryos in 200 μL of HCR[™] Probe Hybridization Buffer (v3.0) for 30 min at 37 °C. CAUTION: *HCR[™] Probe Hybridization Buffer (v3.0) contains formamide, a hazardous material.*
- Prepare probe solution by adding 0.8 pmol of each HCRTM Probe (v3.0) (e.g. 0.8 μL of 1 μM stock) to 200 μL of HCRTM Probe Hybridization Buffer (v3.0) at 37 °C.
 NOTE: For single-molecule RNA imaging, use higher probe concentration (e.g., 16 nM) to increase probe hybridization yield. If desired, this approach can also be used to increase signal for aHCR imaging.
- 3. Remove the pre-hybridization solution and add the probe solution.
- 4. Incubate embryos overnight (>12 h) at 37 $^{\circ}$ C.
- 5. Remove excess probes by washing embryos 4 × 15 min with 1 mL of HCR[™] Probe Wash Buffer (v3.0) at 37 °C. CAUTION: HCR[™] Probe Wash Buffer (v3.0) contains formamide, a hazardous material. NOTE: pre-heat HCR[™] Probe Wash Buffer (v3.0) to 37 °C before use.
- 6. Wash samples 2×5 min with 1 mL of $5 \times$ SSCT at room temperature.

Amplification stage

- 1. Pre-amplify embryos with 1 mL of HCR[™] Amplifier Buffer (v3.0) for 10 min at room temperature. NOTE: *equilibrate HCR[™] Amplifier Buffer (v3.0) to room temperature before use*.
- Separately prepare 6 pmol of hairpin h1 and 6 pmol of hairpin h2 by snap cooling 2 μL of 3 μM stock (heat at 95 °C for 90 seconds and cool to room temperature in a dark drawer for 30 min).
 NOTE: Hairpins h1 and h2 are provided in hairpin storage buffer ready for snap cooling. h1 and h2 should be snap cooled in separate tubes.
- 3. Prepare hairpin solution by adding snap-cooled h1 hairpins and snap-cooled h2 hairpins to $100 \ \mu$ L of HCRTM Amplifier Buffer (v3.0) at room temperature.
- 4. Remove the pre-amplification solution and add the hairpin solution.
- 5. Incubate the embryos overnight (>12 h) in the dark at room temperature. NOTE: For single-molecule RNA imaging, amplify for a shorter period of time to ensure single-molecule dots are diffraction-limited.
- 6. Remove excess hairpins by washing with 1 mL of $5 \times$ SSCT at room temperature:
 - (a) $2 \times 5 \min$
 - (b) $2 \times 30 \min$
 - (c) $1 \times 5 \min$
- 7. Samples can be stored at 4 °C protected from light before microscopy.

4.5% formaldehyde fixation solution

4.5% formaldehyde
0.5× PBS
25 mM EGTA
50% heptane

Proteinase K solution

4 μ g/mL proteinase K

4% formaldehyde post-fixation solution

4% formaldehyde

PBST

1× PBS 0.1% Tween 20

5× SSCT

 $\overline{5\times \text{ sodium chloride sodium citrate (SSC)}}$ 0.1% Tween 20

For 8 mL of solution 975 μ L of 37% formaldehyde 400 μ L of 10× PBS 76 mg of EGTA 4 mL of heptane Fill up to 8 mL with ultrapure H₂O

 $\frac{\text{For 2 mL of solution}}{0.4 \ \mu\text{L of 20 mg/mL proteinase K}}$ Fill up to 2 mL with PBST

 $\frac{\text{For 2 mL of solution}}{216 \ \mu\text{L of 37\% formaldehyde}}$ Fill up to 2 mL with PBST

 $\begin{array}{l} \hline \mbox{For 50 mL of solution} \\ \mbox{5 mL of 10} \times \mbox{PBS} \\ \mbox{500 } \mu \mbox{L of 10\% Tween 20} \\ \hline \mbox{Fill up to 50 mL with ultrapure } \mbox{H}_2 \mbox{O} \end{array}$

NOTE: avoid using calcium chloride and magnesium chloride in PBS as this leads to increased autofluorescence in the embryos.

S1 HCRTM Technology Citation Notes

For citation, please select from the list below as appropriate for your application:

• HCRTM RNA-ISH

HCR[™] RNA in situ hybridization (RNA-ISH) offers unmatched performance, robustness, and versatility imaging RNA targets in diverse organisms and sample types (Choi et al., 2010, Choi et al., 2014, Choi et al., 2018):

- HCRTM RNA-FISH

HCR[™] RNA-FISH enables 10-plex, quantitative, high-resolution RNA fluorescence in situ hybridization (RNA-FISH) with automatic background suppression throughout the protocol for dramatically enhanced performance (signal-to-background, quantitative precision, single-molecule fidelity) and ease-of-use (no probe set optimization for new targets and organisms).

- Enzymatic HCRTM RNA-CISH/RNA-FISH

Enzymatic HCRTM RNA-ISH integrates enzymatic signal amplification to enable extreme-sensitivity RNA imaging using either chromogenic or fluorescent staining (RNA-CISH/RNA-FISH). In tissue sections, entirely protease-free workflows preserve sample morphology and maintain protein target integrity, enabling seamless compatibility with existing immunohistochemistry (IHC)/immunofluorescence (IF) assays. HCRTM RNA-CISH offers the convenience of brightfield microscopy and the option of archival staining.

• 10-Plex HCRTM Spectral Imaging

HCR[™] RNA-FISH/IF enables quantitative high-resolution imaging of 10 RNA and/or protein targets with 1step HCR[™] signal amplification for all targets simultaneously. The method is suitable even for whole-mounts and delicate samples as it requires no repeated staining, imaging, registration, or stripping (Schulte et al., 2024).

• HCRTM RNA-FISH/IF

HCR[™] RNA-FISH/IF enables a unified approach to multiplex, quantitative, high-resolution RNA fluorescence in situ hybridization (RNA-FISH) and protein immunofluorescence (IF), with quantitative 1-step enzymefree signal amplification performed for all RNA and protein targets simultaneously (Schwarzkopf et al., 2021).

• **HCR**TM **IF**

HCR[™] IF enables multiplex, quantitative, high-resolution protein immunofluorescence (IF) in highly autofluorescent samples (e.g., FFPE brain tissue sections) (Schwarzkopf et al., 2021).

• Subcellular Quantitative RNA and Protein Imaging

HCR[™] RNA-FISH enables analog relative quantitation of RNA and/or protein targets with subcellular resolution in the anatomical context of thick autofluorescent samples (e.g., whole-mount vertebrate embryos) (Trivedi et al., 2018, Choi et al., 2018, Schwarzkopf et al., 2021).

• Single-Molecule Quantitative RNA Imaging

HCR[™] RNA-FISH enables digital RNA absolute quantitation with single-molecule resolution in the anatomical context of thick autofluorescent samples (e.g., 0.5 mm adult mouse brain sections) (Shah et al., 2016, Choi et al., 2018).

Read-Out/Read-In Analysis Framework

The read-out/read-in analysis framework enables bidirectional quantitative discovery in an anatomical context (Trivedi et al., 2018).

Revision Number: 11 Date: 2025-06-12

• Protocols in Diverse Sample Types

Protocols for HCR[™] RNA-FISH and/or IF in diverse sample types are adapted from the zoo paper (Choi et al., 2016):

- bacteria in suspension
- FFPE human tissue sections
- generic sample in solution
- generic sample on a slide
- mammalian cells on a slide
- mammalian cells in suspension
- whole-mount chicken embryos
- whole-mount fruit fly embryos
- whole-mount mouse embryos
- \circ whole-mount nematode larvae
- whole-mount sea urchin embryos
- whole-mount zebrafish embryos and larvae

• HCRTM RNA Flow Cytometry

HCR[™] RNA Flow Cytometry enables analog RNA relative quantitation for high-throughput expression profiling of mammalian cells and bacteria without the need to engineer reporter lines (Choi et al., 2018).

• HCRTM Northern Blots

HCR[™] Northern Blots enable simultaneous quantification of RNA target size and abundance with automatic background suppression throughout the protocol (Schwarzkopf & Pierce, 2016).

• HCRTM Amplifiers

HCR[™] Amplifiers enable multiplex, quantitative, 1-step, isothermal, enzyme-free signal amplification in diverse technological settings (Dirks & Pierce, 2004).