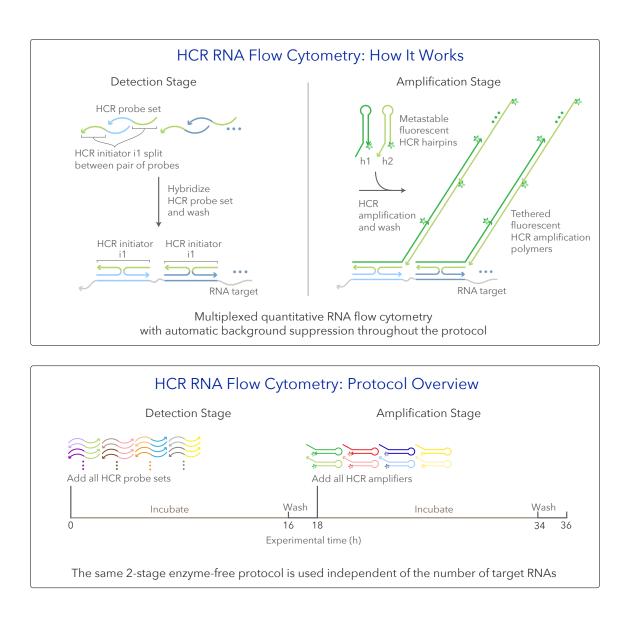


HCR RNA flow cytometry protocol for mammalian cells in suspension

This protocol has not been validated for all mammalian cell types and should only be used as a template.

Technical support


support@molecularinstruments.com

Safety data sheets (SDS)

www.molecularinstruments.com/safety

Patents

Molecular Instruments® products are protected by and for use under patents: www.molecularinstruments.com/patents

Revision Number: 8 Date: 2022-07-18

HCR RNA Flow Cytometry

Multiplexed quantitative RNA flow cytometry

Multiplexed Experiment

• Order one HCR RNA-FISH bundle per target RNA

Example 2-Plex Experiment

- HCR bundle for target mRNA1
 - HCR split-initiator probe set: target mRNA1 for use with amplifier B1
 - HCR amplifier: B1-647
 - HCR RNA-FISH buffers: probe hybridization buffer, probe wash buffer, amplification buffer (for use with all bundles)
- HCR bundle for target mRNA2
 - HCR split-initiator probe set: target mRNA2 for use with amplifier B2
 - HCR amplifier: B2-488

Storage conditions

- Store HCR probe sets, HCR amplifiers, HCR probe hybridization buffer, and HCR probe wash buffer at -20 °C.
- Store HCR amplification buffer at 4 °C.
- On the bench top, keep stock solutions on ice.
- Make sure all solutions are well mixed before use.

Sample preparation protocol

- 1. Aspirate growth media from culture plate and wash cells with DPBS. NOTE: avoid using calcium chloride and magnesium chloride in DPBS as this leads to increased autofluorescence.
- 2. Add 3 mL of trypsin per 10 cm plate and incubate in a 5% CO₂ incubator at 37 °C for 5 min.
- 3. Quench trypsin by adding 3 mL of growth media.
- 4. Transfer cells to a 15 mL conical tube and centrifuge for 5 min at $180 \times g$.
- 5. Aspirate supernatant and re-suspend cells in 4% formaldehyde to reach approximately 10⁶ cells/mL. CAUTION: *use formaldehyde with extreme care as it is a hazardous material.*
- 6. Fix cells for at least 1 hr at room temperature.
- 7. Centrifuge for 5 min at $180 \times g$ and aspirate supernatant.
- 8. Wash cells 4 times with PBST (use the same volume as formaldehyde solution).
- 9. Re-suspend cells in cold 70% ethanol (use the same volume as formaldehyde and PBST solutions).
- 10. Store cells at 4 $^{\circ}$ C overnight before use.

Multiplexed HCR v3.0 protocol

Detection stage

- 1. Transfer desired amount $(0.5-1 \times 10^6)$ of fixed cells into a 1.5 mL tube.
- Centrifuge for 5 min and remove supernatant.
 NOTE: Centrifugation should be as gentle as possible to pellet cells. All centrifugation steps are done at 180 × g.
- 3. Wash cells twice with 500 μ L of PBST. Centrifuge for 5 min to remove supernatant.
- 4. Re-suspend the pellet with 400 μ L of probe hybridization buffer and pre-hybridize for 30 min at 37 °C. CAUTION: *probe hybridization buffer contains formamide, a hazardous material.*
- 5. In the meantime, prepare probe solution by adding 2 pmol of each probe set (e.g. 2 μ L of 1 μ M stock) to 100 μ L of probe hybridization buffer pre-heated to 37 °C.
- 6. Add the probe solution directly to the sample to reach a final probe concentration of 4 nM. NOTE: use higher probe concentration (e.g., 16 nM) to increase signal for qHCR flow cytometry.
- 7. Incubate the sample overnight (>12 h) at 37 $^{\circ}$ C.
- 8. Centrifuge for 5 min to remove probe solution.
- 9. Re-suspend the cell pellet with 500 μL of probe wash buffer.
 CAUTION: probe wash buffer contains formamide, a hazardous material.
 NOTE: Probe wash buffer should be pre-heated to 37°C before use.
- 10. Incubate for 10 min at 37 °C and remove the wash solution by centrifugation for 5 min.
- 11. Repeat steps 9 and 10 for three additional times.
- 12. Re-suspend the cell pellet with 500 μ L of 5× SSCT.
- 13. Incubate for 5 min at room temperature.
- 14. Proceed to hairpin amplification.

Amplification stage

- 1. Centrifuge for 5 min to pellet the cells.
- 2. Re-suspend the cell pellet with 150 μ L of amplification buffer and pre-amplify for 30 min at room temperature.
- Separately prepare 15 pmol of hairpin h1 and 15 pmol of hairpin h2 by snap cooling 5 μL of 3 μM stock (heat at 95 °C for 90 seconds and cool to room temperature in a dark drawer for 30 min).
 NOTE: HCR hairpins h1 and h2 are provided in hairpin storage buffer ready for snap cooling. h1 and h2 should be snap cooled in separate tubes.
- 4. Prepare hairpin solution by adding snap-cooled h1 hairpins and snap-cooled h2 hairpins to 100 μ L of amplification buffer at room temperature.
- 5. Add the hairpin solution directly to the sample to reach a final hairpin concentration of 60 nM.
- 6. Incubate the sample overnight (>12 h) in the dark at room temperature.
- 7. Centrifuge for 5 min and remove the hairpin solution.
- 8. Re-suspend the cell pellet with 500 μ L of 5× SSCT.
- 9. Without incubation, remove the wash solution by centrifugation for 5 min.
- 10. Repeat steps 8 and 9 for five additional times.
- 11. Re-suspend the cell pellet in desired buffer and volume.
- 12. Filter cells before flow cytometry.

Buffer recipes

4% formaldehyde in PBST

4% formaldehyde 1× PBS 0.1% Tween 20

 $\frac{5 \times SSCT}{5 \times \text{ sodium chloride sodium citrate (SSC)}}$ 0.1% Tween 20 For 10 mL of solution 2.5 mL of 16% formaldehyde 1 mL of 10× PBS 100 μ L of 10% Tween 20 Fill up to 10 mL with ultrapure H₂O

 $\frac{\text{For 40 mL of solution}}{10 \text{ mL of } 20 \times \text{SSC}}$ $400 \ \mu\text{L of 10\% Tween 20}$ fill up to 40 mL with ultrapure H₂O

NOTE: avoid using calcium chloride and magnesium chloride in PBS as this leads to increased autofluorescence in the samples.

HCR Technology Citation Notes

For citation, please select from the list below as appropriate for your application:

• HCR IHC + HCR RNA-FISH

HCR IHC + HCR RNA-FISH enables a unified approach to multiplexed, quantitative, high-resolution protein immunohistochemistry (IHC) and RNA fluorescence in situ hybridization (RNA-FISH), with quantitative 1-step enzyme-free HCR signal amplification performed for all protein and RNA targets simultaneously (Schwarzkopf et al., 2021).

• HCR IHC

HCR IHC enables multiplexed, quantitative, high-resolution protein immunohistochemistry (IHC) in highly autofluorescent samples (e.g., FFPE brain tissue sections) (Schwarzkopf et al., 2021).

• HCR RNA-FISH (v3.0)

Third-generation HCR RNA-FISH (v3.0) enables multiplexed, quantitative, high-resolution RNA fluorescence in situ hybridization (RNA-FISH) with automatic background suppression *throughout the protocol* for dramatically enhanced performance (signal-to-background, qHCR precision, dHCR fidelity) and ease-of-use (no probe set optimization for new targets and organisms) (Choi et al., 2018). Quantitative analysis modes:

- qHCR RNA imaging: analog mRNA relative quantitation with subcellular resolution in the anatomical context of thick autofluorescent samples.
- dHCR RNA imaging: digital mRNA absolute quantitation with single-molecule resolution in the anatomical context of thick autofluorescent samples.
- qHCR RNA flow cytometry: analog mRNA relative quantitation for high-throughput expression profiling of mammalian cells and bacteria.

Protocols for HCR RNA-FISH (v3.0) in diverse organisms are adapted from the Zoo paper.

• qHCR RNA imaging

qHCR RNA imaging enables mRNA relative quantitation with subcellular resolution in the anatomical context of thick autofluorescent samples (e.g., whole-mount vertebrate embryos). The read-out/read-in analysis framework enables bidirectional quantitative discovery in an anatomical context (Trivedi et al., 2018).

• Zoo paper

Protocols for multiplexed mRNA imaging in diverse sample types (Choi et al., 2016):

- bacteria in suspension
- FFPE human tissue sections
- generic sample in solution
- generic sample on a slide
- mammalian cells on a slide
- mammalian cells in suspension
- whole-mount chicken embryos
- whole-mount fruit fly embryos
- \circ whole-mount mouse embryos
- whole-mount nematode larvae
- whole-mount sea urchin embryos
- whole-mount zebrafish embryos and larvae

• dHCR imaging

dHCR RNA imaging enables RNA absolute quantitation with single-molecule resolution in the anatomical context of thick autofluorescent samples (e.g., 0.5 mm adult mouse brain sections) (Shah et al., 2016).

• qHCR northern blots

qHCR northern blots enable multiplexed quantification of RNA target size and abundance for up to 5 target RNAs (Schwarzkopf & Pierce, 2016).

• HCR RNA-FISH (v2.0)

Second-generation in situ HCR RNA-FISH technology (v2.0) using DNA HCR probes and DNA HCR probes and DNA HCR amplifiers: $10 \times$ increase in signal, $10 \times$ reduction in cost, dramatic increase in reagent durability (Choi et al., 2014).

• HCR RNA-FISH (v1.0)

First-generation HCR RNA-FISH technology (v1.0) using RNA HCR probes and RNA HCR amplifiers: multiplexed mRNA imaging in whole-mount vertebrate embryos with simultaneous signal amplification for up to 5 target mRNAs (Choi et al., 2010).

• HCR mechanism

The hybridization chain reaction (HCR) mechanism enables multiplexed, quantitative, 1-step, isothermal, enzyme-free signal amplification in diverse technological settings (Dirks & Pierce, 2004).

HCR Technology References

- Choi, H. M. T., Chang, J. Y., Trinh, L. A., Padilla, J. E., Fraser, S. E., & Pierce, N. A. (2010). Programmable in situ amplification for multiplexed imaging of mRNA expression. *Nat Biotechnol*, **28**(11), 1208–12.
- Choi, H. M. T., Beck, V. A., & Pierce, N. A. (2014). Next-generation in situ hybridization chain reaction: higher gain, lower cost, greater durability. *ACS Nano*, **8**(5), 4284–4294.
- Choi, H. M. T., Calvert, C. R., Husain, N., Huss, D., Barsi, J. C., Deverman, B. E., Hunter, R. C., Kato, M., Lee, S. M., Abelin, A. C. T., Rosenthal, A. Z., Akbari, O. S., Li, Y., Hay, B. A., Sternberg, P. W., Patterson, P. H., Davidson, E. H., Mazmanian, S. K., Prober, D. A., van de Rijn, M., Leadbetter, J. R., Newman, D. K., Readhead, C., Bronner, M. E., Wold, B., Lansford, R., Sauka-Spengler, T., Fraser, S. E., & Pierce, N. A. (2016). Mapping a multiplexed zoo of mRNA expression. *Development*, 143, 3632–3637.
- Choi, H. M. T., Schwarzkopf, M., Fornace, M. E., Acharya, A., Artavanis, G., Stegmaier, J., Cunha, A., & Pierce, N. A. (2018). Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. *Development*, 145, dev165753.
- Dirks, R. M., & Pierce, N. A. (2004). Triggered amplification by hybridization chain reaction. *Proc Natl Acad Sci* USA, **101**(43), 15275–15278.
- Schwarzkopf, M., & Pierce, N. A. (2016). Multiplexed miRNA northern blots via hybridization chain reaction. *Nucleic Acids Res*, **44**(15), e129.
- Schwarzkopf, M., Liu, M.C., Schulte, S.J., Ives, R., Husain, N., Choi, H.M.T., & Pierce, N. A. (2021). Hybridization chain reaction enables a unified approach to multiplexed, quantitative, high-resolution immunohistochemistry and in situ hybridization. *Development*, **148**(22), dev199847.
- Shah, S., Lubeck, E., Schwarzkopf, M., He, T.-F., Greenbaum, A., Sohn, C. H., Lignell, A., Choi, H. M. T., Gradinaru, V., Pierce, N. A., & Cai, L. (2016). Single-molecule RNA detection at depth via hybridization chain reaction and tissue hydrogel embedding and clearing. *Development*, 143, 2862–2867.
- Trivedi, V., Choi, H. M. T., Fraser, S. E., & Pierce, N. A. (2018). Multidimensional quantitative analysis of mRNA expression within intact vertebrate embryos. *Development*, **145**, dev.156869.