

HCR™ RNA-FISH (v3.0) protocol for whole-mount mouse embryos

This protocol has been optimized for embryos at stage E9.5 and should only be used as a template for other stages.

Technical Support

support@molecularinstruments.com

Safety Data Sheets (SDS)

www.molecularinstruments.com/safety-v3

Patents

www.molecularinstruments.com/patents

Ordering for Multiplex Experiment

Order one HCRTM RNA-FISH (v3.0) kit per target RNA

Example 2-Plex Experiment

- HCRTM RNA-FISH (v3.0) kit for target mRNA1
 - ∘ HCR™ Probe (v3.0): target mRNA1 for use with amplifier B1
 - HCRTM Amplifier (v3.0): B1-647
 - o HCR™ RNA-FISH Buffers (v3.0): HCR™ Probe Hybridization Buffer (v3.0), HCR™ Probe Wash Buffer (v3.0), HCR™ Amplifier Buffer (v3.0) (for use with all kits)
- HCRTM RNA-FISH (v3.0) kit for target mRNA2
 - HCRTM Probe (v3.0): target mRNA2 for use with amplifier B2
 - HCRTM Amplifier (v3.0): B2-488

Storage conditions

- Store HCRTM Probes (v3.0), HCRTM Amplifiers (v3.0), HCRTM Probe Hybridization Buffer (v3.0), and HCRTM Probe Wash Buffer (v3.0) at -20 °C.
- Store HCRTM Amplifier Buffer (v3.0) at 4 °C.
- On the bench top, keep stock solutions on ice.
- Make sure all solutions are well mixed before use.

Revision Number: 11 MI-Protocol-RNAFISH-Mouse
Date: 2025-06-12 Page 1 of 8

Preparation of fixed whole-mount mouse embryos

- 1. Wipe all dissection equipment with RNaseZap.
- 2. Kill a pregnant female mouse using an IACUC-approved protocol.
- 3. Immediately remove the uterus and submerge it in 4% paraformaldehyde (PFA) in a fresh RNase-free petri dish. NOTE: use fresh PFA and cool to 4 °C before use to avoid increased autofluorescence.
- 4. Dissect the mouse embryos from the uterus while it is submerged in 4% PFA.

CAUTION: use PFA with extreme care as it is a hazardous material.

NOTE: Each female mouse produces 6–9 embryos. We recommend using \approx 2 mL of solution per group of 10 embryos.

- 5. Transfer the embryos to a clean vial containing fresh 4% PFA and fix them overnight or longer at 4 °C. NOTE: *make sure all embryos are submerged in PFA during fixation.*
- 6. Wash 2×5 min with PBST on ice.
- 7. Dehydrate embryos into methanol (MeOH) with a series of graded MeOH/PBST washes for 10 min on ice:
 - (a) 25% MeOH / 75% PBST
 - (b) 50% MeOH / 50% PBST
 - (c) 75% MeOH / 25% PBST
 - (d) 100% MeOH
 - (e) 100% MeOH.
- 8. Incubate embryos at -20 °C overnight (> 16 h) or until use.

NOTE: *Embryos could be stored for six months at -20* $^{\circ}C$.

9. Transfer the required number of embryos for an experiment to a 2 mL tube.

NOTE: make sure embryos are submerged during washes.

- 10. Rehydrate with a series of graded MeOH/PBST washes for 10 min each on ice:
 - (a) 75% MeOH / 25% PBST
 - (b) 50% MeOH / 50% PBST
 - (c) 25% MeOH / 75% PBST
 - (d) 100% PBST
- 11. Wash embryos with PBST for 10 min at room temperature.

Revision Number: 11 MI-Protocol-RNAFISH-Mouse
Date: 2025-06-12 Page 2 of 8

12. Immerse embryos in 10 μ g/mL proteinase K solution for 15 min at room temperature.

NOTE: Proteinase K concentration and treatment time should be reoptimized for each batch of proteinase K, or for samples at a different developmental stage.

- 13. Wash embryos 2×5 min with PBST.
- 14. Postfix with 4% PFA for 20 min at room temperature.

 CAUTION: use PFA with extreme care as it is a hazardous material.
- 15. Wash embryos 3×5 min with PBST.

Revision Number: 11 MI-Protocol-RNAFISH-Mouse
Date: 2025-06-12 Page 3 of 8

Multiplexed HCRTM RNA-FISH (v3.0) protocol

Detection stage

- 1. For each sample, transfer 1-4 embryos to a 2 mL tube.
- 2. Incubate embryos in 1 mL of HCRTM Probe Hybridization Buffer (v3.0) for 5 min. CAUTION: *HCR*TM *Probe Hybridization Buffer* (v3.0) *contains formamide, a hazardous material.*
- 3. Remove the buffer and pre-hybridize with 1 mL of HCRTM Probe Hybridization Buffer (v3.0) for 30 min at 37 °C.
- 4. Prepare probe solution by adding 2 pmol of each HCRTM Probe (v3.0) (e.g. 2 μ L of 1 μ M stock) to 500 μ L of HCRTM Probe Hybridization Buffer (v3.0) at 37 °C.

NOTE: For single-molecule RNA imaging, use higher probe concentration (e.g., 16 nM) to increase probe hybridization yield. If desired, this approach can also be used to increase signal for subcellular quantitative RNA imaging.

- 5. Remove the pre-hybridization solution and add the probe solution.
- 6. Incubate embryos overnight (>12 h) at 37 °C.
- 7. Remove excess probes by washing embryos 4×15 min with 1 mL of HCRTM Probe Wash Buffer (v3.0) at 37 °C.

CAUTION: HCR^{TM} Probe Wash Buffer (v3.0) contains formamide, a hazardous material. NOTE: pre-heat HCR^{TM} Probe Wash Buffer (v3.0) to 37 °C before use.

8. Wash samples 2×5 min with $5 \times$ SSCT at room temperature.

Amplification stage

- 1. Pre-amplify embryos with 1 mL of HCRTM Amplifier Buffer (v3.0) for 5 min at room temperature. NOTE: *equilibrate HCR*TM *Amplifier Buffer (v3.0) to room temperature before use.*
- 2. Separately prepare 30 pmol of hairpin h1 and 30 pmol of hairpin h2 by snap cooling 10 μ L of 3 μ M stock (heat at 95 °C for 90 seconds and cool to room temperature in a dark drawer for 30 min).

NOTE: Hairpins h1 and h2 are provided in hairpin storage buffer ready for snap cooling. h1 and h2 should be snap cooled in separate tubes.

- 3. Prepare hairpin solution by adding snap-cooled h1 hairpins and snap-cooled h2 hairpins to 500 μ L of HCRTM Amplifier Buffer (v3.0) at room temperature.
- 4. Remove the pre-amplification solution and add the hairpin solution.
- 5. Incubate the embryos overnight (>12 h) in the dark at room temperature.

 NOTE: For single-molecule RNA imaging, amplify for a shorter period of time to ensure single-molecule dots are diffraction-limited.

Revision Number: 11 MI-Protocol-RNAFISH-Mouse
Date: 2025-06-12 Page 4 of 8

- 6. Remove excess hairpins by washing with 1 mL of $5 \times$ SSCT at room temperature:
 - (a) $2 \times 5 \min$
 - (b) $2 \times 30 \text{ min}$
 - (c) $1 \times 5 \min$
- 7. Samples can be stored at 4 °C protected from light before microscopy.

Revision Number: 11 MI-Protocol-RNAFISH-Mouse Date: 2025-06-12 Page 5 of 8

Buffer recipes

4% paraformaldehyde (PFA)

For 25 mL of solution 4% PFA 1 g of PFA powder $1 \times PBS$ 25 mL of $1 \times PBS$

Heat solution at 50–60 °C to dissolve powder

For 50 mL of solution

PBST $1 \times PBS$

5 mL of $10 \times PBS$ 0.1% Tween 20 $500 \mu L$ of 10% Tween 20

Fill up to 50 mL with ultrapure H₂O

Proteinase K solution For 2 mL of solution

 $10 \mu g/mL$ proteinase K 1 μ L of 20 mg/mL proteinase K Fill up to 2 mL with PBST

 $5 \times SSCT$ For 40 mL of solution 5× sodium chloride sodium citrate (SSC) $10 \text{ mL of } 20 \times \text{SSC}$

0.1% Tween 20 $400 \ \mu L$ of 10% Tween 20

Fill up to 40 mL with ultrapure H₂O

NOTE: avoid using calcium chloride and magnesium chloride in PBS as this leads to increased autofluorescence in the embryos.

Revision Number: 11 MI-Protocol-RNAFISH-Mouse Date: 2025-06-12 Page 6 of 8

S1 HCRTM Technology Citation Notes

For citation, please select from the list below as appropriate for your application:

• HCRTM RNA-ISH

HCRTM RNA in situ hybridization (RNA-ISH) offers unmatched performance, robustness, and versatility imaging RNA targets in diverse organisms and sample types (Choi et al., 2010, Choi et al., 2014, Choi et al., 2018):

- HCRTM RNA-FISH

HCRTM RNA-FISH enables 10-plex, quantitative, high-resolution RNA fluorescence in situ hybridization (RNA-FISH) with automatic background suppression throughout the protocol for dramatically enhanced performance (signal-to-background, quantitative precision, single-molecule fidelity) and ease-of-use (no probe set optimization for new targets and organisms).

- Enzymatic HCRTM RNA-CISH/RNA-FISH

Enzymatic HCRTM RNA-ISH integrates enzymatic signal amplification to enable extreme-sensitivity RNA imaging using either chromogenic or fluorescent staining (RNA-CISH/RNA-FISH). In tissue sections, entirely protease-free workflows preserve sample morphology and maintain protein target integrity, enabling seamless compatibility with existing immunohistochemistry (IHC)/immunofluorescence (IF) assays. HCRTM RNA-CISH offers the convenience of brightfield microscopy and the option of archival staining.

• 10-Plex HCRTM Spectral Imaging

HCRTM RNA-FISH/IF enables quantitative high-resolution imaging of 10 RNA and/or protein targets with 1-step HCRTM signal amplification for all targets simultaneously. The method is suitable even for whole-mounts and delicate samples as it requires no repeated staining, imaging, registration, or stripping (Schulte et al., 2024).

• HCRTM RNA-FISH/IF

HCRTM RNA-FISH/IF enables a unified approach to multiplex, quantitative, high-resolution RNA fluorescence in situ hybridization (RNA-FISH) and protein immunofluorescence (IF), with quantitative 1-step enzyme-free signal amplification performed for all RNA and protein targets simultaneously (Schwarzkopf et al., 2021).

• HCRTM IF

HCR™ IF enables multiplex, quantitative, high-resolution protein immunofluorescence (IF) in highly autofluorescent samples (e.g., FFPE brain tissue sections) (Schwarzkopf et al., 2021).

• Subcellular Quantitative RNA and Protein Imaging

HCRTM RNA-FISH enables analog relative quantitation of RNA and/or protein targets with subcellular resolution in the anatomical context of thick autofluorescent samples (e.g., whole-mount vertebrate embryos) (Trivedi et al., 2018, Choi et al., 2018, Schwarzkopf et al., 2021).

• Single-Molecule Quantitative RNA Imaging

HCR™ RNA-FISH enables digital RNA absolute quantitation with single-molecule resolution in the anatomical context of thick autofluorescent samples (e.g., 0.5 mm adult mouse brain sections) (Shah et al., 2016, Choi et al., 2018).

• Read-Out/Read-In Analysis Framework

The read-out/read-in analysis framework enables bidirectional quantitative discovery in an anatomical context (Trivedi et al., 2018).

Revision Number: 11 MI-Protocol-RNAFISH-Mouse
Date: 2025-06-12 Page 7 of 8

• Protocols in Diverse Sample Types

Protocols for HCRTM RNA-FISH and/or IF in diverse sample types are adapted from the zoo paper (Choi et al., 2016):

- o bacteria in suspension
- o FFPE human tissue sections
- o generic sample in solution
- o generic sample on a slide
- o mammalian cells on a slide
- o mammalian cells in suspension
- o whole-mount chicken embryos
- o whole-mount fruit fly embryos
- o whole-mount mouse embryos
- whole-mount nematode larvae
- o whole-mount sea urchin embryos
- o whole-mount zebrafish embryos and larvae

• HCRTM RNA Flow Cytometry

HCR™ RNA Flow Cytometry enables analog RNA relative quantitation for high-throughput expression profiling of mammalian cells and bacteria without the need to engineer reporter lines (Choi et al., 2018).

• HCRTM Northern Blots

HCRTM Northern Blots enable simultaneous quantification of RNA target size and abundance with automatic background suppression throughout the protocol (Schwarzkopf & Pierce, 2016).

• HCRTM Amplifiers

HCR™ Amplifiers enable multiplex, quantitative, 1-step, isothermal, enzyme-free signal amplification in diverse technological settings (Dirks & Pierce, 2004).

Revision Number: 11 MI-Protocol-RNAFISH-Mouse
Date: 2025-06-12 Page 8 of 8